python In 机器学习(一)

LinearRegression

这里简单记录一下最近学习的算法代码

多元线性回归算法

这里主要通过sklearn获取数据进行实验

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from sklearn import *
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import torch

if __name__ == '__main__':
# 加载糖尿病数据集
data = datasets.load_diabetes()
data_X = data.data
data_Y = data.target
# 拆分训练集以及预测数据
X_train, X_test, Y_train, Y_test = train_test_split(data_X, data_Y, test_size=0.2)

# 创建一个多元线性回归算法对象
lr = LinearRegression()

# 使用训练集训练模型
lr.fit(X_train, Y_train)

# 使用测试集进行预测
Y_pred = lr.predict(X_test)
Y_pred_train = lr.predict(X_train)
# 打印模型的均方差
print(f"pred loss : {mean_squared_error(Y_test, Y_pred)}")

print(f"Y_pred_train loss : {mean_squared_error(Y_train, Y_pred_train)}")
pass

分类

这里是分类的应用:

  • logistics回归 : OVR,one vs other,将多分类当成多个二分类
  • softmax:一次得到多个分类的概率
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

if __name__ == '__main__':
# 加载数据
iris = datasets.load_iris()

X = iris.data
Y = iris.target

print(f"Y = {Y}")

# 切分数据
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)

# 创建模型, 根据数据决定是用二分类还是多分类
# 使用logistics回归还是softmax回归 ,取决于multiclass参数
# ovr : 1对其它
# multinomial : softmax
# "multi_class": [
# StrOptions({"auto", "ovr", "multinomial"}),
# Hidden(StrOptions({"deprecated"})),
# ],
lr = LogisticRegression(max_iter=1000000)

# 使用训练集训练模型
lr.fit(X_train, y_train)

# 对测试集进行预测
y_pred = lr.predict(X_test)

# 打印模型的准确率
print(f"accuracy = {accuracy_score(y_test, y_pred)}")

作者

Markel

发布于

2024-08-03

更新于

2024-12-30

许可协议

评论